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Abstract. We complete the analysis of twist-two generalized parton distributions of the nucleon in one-
loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even
isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We
also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion.
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1 Introduction

Generalized parton distributions (GPDs) provide a uni-
fied parameterization of many different aspects of hadron
physics [1-4]. Understanding GPDs in detail is therefore
tantamount to understanding in large parts the internal
structure of hadrons. This motivates extensive experimen-
tal programs as well as theoretical work. Details can be
found in the reviews [5-7], which emphasize the different
types of physics encoded in these quantities. More recently
it has been shown that interesting information about the
distribution of transversely polarized quarks in a hadron
is contained in GPDs associated with chiral-odd quark
operators [8,9], for which there have been relatively few
studies so far.

The extraction of GPDs from experiment is a highly
nontrivial task, since in observables the distributions ap-
pear only within convolutions. These are relatively simple
at leading order in the strong coupling but become increas-
ingly complex at higher orders, see e.g. [10]. In practice
one therefore has to use parameterizations of GPDs which
are, on one hand, sufficiently flexible to catch the physics
and, on the other hand, contain only few parameters. In
this context, the calculation of moments of GPDs in lat-
tice QCD is expected to become highly important in the
future.

The lattice evaluation of these moments, parameter-
ized by the form factors of local matrix elements, is very
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similar to the case of the usual electromagnetic form fac-
tors [11]. The main limitation at present is that lattice
calculations with dynamical quarks can only be done for
unphysically heavy quarks and thus pions. The mass of the
pion affects, however, the spatial extent of the nucleon and
hence its form factors. Therefore, their extrapolation to
the physical limit can be fairly nontrivial, and simple lin-
ear extrapolations with respect to m_ or m2 could be quite
inadequate. Progress in this respect requires an analysis
within chiral perturbation theory (ChPT). We have pre-
sented such an analysis for the pion GPDs in [12] and for
nucleon GPDs in the chiral-even isosinglet sector in [13].
In the present paper we extend this work to the chiral-even
isotriplet sector and the chiral-odd sector, giving complete
corrections at one-loop accuracy. Calculations of a similar
scope have recently been reported in [14], and we will com-
pare our results in detail. There already exists a number of
lattice results for moments of GPDs, see [15,16] and refer-
ences therein. We do not include any ChPT fits to these in
the present paper, but leave them to future lattice studies.

Our paper is organized as follows. In sects. 2, 3 and 6
we collect details about GPD parameterizations, the oper-
ator product expansion, and heavy-baryon ChPT that are
needed in our analysis. We proceed in each case by con-
structing the operators within ChPT that match the rel-
evant twist-two operators in QCD, and by identifying the
loop corrections which contribute to a given form factor at
relative order O(g?) in the chiral expansion (sects. 4, 5.1
and 7). Results of the corresponding calculations are given
for the vector form factors in sect. 5.2, for the axial form



336

factors in sect. 5.3, and for the chiral-odd form factors
in sect. 8. In sect. 9 all results are collected and rewrit-
ten in terms of the usual parameterization of GPDs. We
summarize our main findings in sect. 10.

2 Chiral-even generalized parton distributions

To begin with let us recall the definitions of generalized
parton distributions associated with chiral-even quark op-
erators. For the distributions with definite isospin [ in a
nucleon one can write
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where a is a light-like auxiliary vector, M is the nu-
cleon mass, and we use the standard kinematical variables
P=3(p+p), A=p —p, t=A? and 2 = —(Aa)/(Pa).
Wilson lines must be inserted between the quark fields
if one is not working in the light-cone gauge (aA) = 0.
We combine the two-dimensional unit matrix 70 and the
triplet of Pauli matrices 7 in a four-vector 74 = (7%, 1),
with the matrices acting on the isodoublet of quark fields
q or of nucleon states N. The isosinglet distributions cor-
respond to A = 0 and the isotriplet ones to A = 1,2, 3.
In terms of individual quark flavors in the proton one has
H'™=0 = g* + H? and H'=' = H* — H¢, with analogous
relations for the other distributions.

The Mellin moments of the GPDs in (1) are related
to the matrix elements of the chiral-even local twist-two
operators

A R=s
Omuz.-.un :u Tunms q'y,“zDHz...zDunT q,
~4 -
Oul,u,g...,u,n = T S q’)/lilry5 ZDM2 st ZDMnT q (2)

M1 fon J1---fhn

with D# = %(ﬁ“ —5“). Here T denotes the subtraction of
trace terms in the indicated Lorentz indices and S denotes
symmetrization, normalized as S, t"1#2 = L(tr#2 4+
t#2#1), Both operations are conveniently implemented by
contraction with the auxiliary vector a,

O0Ma) = a* ... a" OA

b 3)

O04(a) = a™* ...a" OA
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The local matrix elements can be parameterized as

(N O @) | N; () = :_:wP)"—'“—l (a)!
< ) [ AL (1) %Bgm] u(p)
i mod (n+1,2) (a)" - a(p)u(p) CL(1).
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and the moments of the GPDs are given by
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where here and in the following we omit the isospin label
I when it is not required. The restriction to even k in (4)
and (5) is a consequence of time reversal invariance.

To calculate the chiral corrections to the nucleon form
factors in heavy-baryon chiral perturbation theory we
work in the Breit frame, where P = (. The incoming and
outgoing nucleons then have opposite spatial momenta
p' = —p = A/2 and equal energies, py = p, = M~ with

=/1— A2/4]2

In terms of the velocity vector v, given by v = (1,0,0,0)
in the Breit frame, the incoming and outgoing nucleon
momenta are given by p = M~yv — A/2 and p' = M~yv +
A/2. Note that (vA) = (vS) = 0. Dirac bilinears can be
expressed in terms of the velocity v, and the spin operator
Sy = %z’au,ﬁs v”. Introducing the spinors

(6)

14y
2

14y

w(p) = N7 -

u(p), u(p)=N"" u(p) (7)
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with V' = /(1 + 7)/2, the matrix elements in (4) can be

rewritten as [13]

(Ni(p')] O} (a) |N; (p)) =
S ) (a0) T (@) ()
k=—1

X |(@2) Bf i1 (1) + 7 1(@S), (SA)] My (8)] ().

(Ni(p)| Opt(a) | N;(p)) =
Tz‘A (M,y)n—k—l (av)n—k—l (aA)k ,av(p/)
k=0

X [27 (aS) E‘é’k(t) + M M

YE Mn,k(t)] uy(p), (8)

where due to time reversal invariance the terms with
E, r+1 are only nonzero for odd k, whereas those with

My i, En i and My, j, are only nonzero for even k. The re-
lation between the form factors in (4) and those in (8) is

2

E,1(t) = Anx(t) + mBmk(t) for k <n,
Epn(t) =7 Calt),

Mk (t) = Ap () + Bni(t),

Eni(t) = Api(t),

M (t) = (1+ )7 Ap i (t) + Boi , (9)

which is readily inverted to

Ans(®) = 25 | Bna) = i 0nal0)]
Bn,k(t) = % I:Mmk(t) - Emk(t)] )

3 Heavy-baryon ChPT

To set our notation, let us briefly review the main ingredi-
ents of chiral perturbation theory for heavy baryons, which
is an effective theory for the limit ¢, m, < M, where ¢ is
a generic momentum. To describe pions we use the non-
linear representation U(z) = [u(z)]*> = exp[ir®(z) 7%/ F],
where F' =~ 92 MeV is the pion decay constant in the chi-
ral limit'. The explicit breaking of chiral symmetry by the
quark masses is implemented by the field x(x). We assume
the isospin limit, where one can replace x(z) — m2 7% with
the bare pion mass m. We will not use external vector or

! Our convention is that uppercase indices of 7 as in (1) run
from 0 to 3, whereas lowercase ones run from 1 to 3.

337

axial vector fields here. The nucleon is described by the
heavy-baryon field N, (z) = 3(1 + §) eMo(v2) N (), where
My is the bare nucleon mass and v the velocity vector.
The Fourier transform of N, (z) depends on the residual
nucleon momentum, given by the original nucleon momen-
tum minus Mgv. Important derived quantities are the ax-
ial vector field

1
up = i(ufdu — udul) = F dumt® +0(n°), (11)
the connection

1
I, = 3 (uTBHu + uauuT)
=L € @ auﬂbTC + O(7r4) ,

172 (12)

and

x+ = ulyul uxtu. (13)

Under global chiral transformations, described by unitary
matrices Vy, and Vg, the different fields transform as

U= VUV,
u— VpuH! = HuV} |

X — VvaLT,
Ny, — HN,,

I,—HIL,H +Ho,H', (14)
and u, and x+ transform homogeneously as
u, — Hu, H' x+ = Hx+H'.  (15)

The unitary matrix H depends on Vi, Vg and on U(x)
and therefore has an xz-dependence. With the connection
I', one can construct the covariant derivative V. It acts
as V, X = 90,X +TI,X on quantities like IV,,, which trans-
form with a factor H on their left, and as [V,,Y] =
0,.Y +[I,,Y] on quantities like w,,, which transform with
H on the left and with H' on the right. Corresponding
derivatives acting to the left are Z V=206-2z I', and
Y, %] =Y0 - Y, I,], where Z transforms with a factor
HT on its right.

The effective Lagrangian for the theory contains a pure
pion piece and a piece describing the nucleon and its inter-
action with pions, Leg = L + L;n. Expanding in powers
of ¢ one has

L,=LP Wy L y=LW+c% +... (16)
with [17,18]
F2
£$r2) -1 Tr(uuu“ + X+) )
l 2 1
(4) _ 8 4 ©
Ly = 16 (Trx+)” + 6 {2T‘rx+Tr(uHu )
+2Tr(x2_)—(TrX,)2}+... , (17)
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and [19]

£ =N, {i(@9) + go (5w} N,

£ = m{ (”VQ)L; v ;f;o {(VS), (wu)} + 1 Tr x4

2
_ % 2 Iz
+ (02 8M0)(vu) +csuyu
+ (04 + ! )[S“ S¥Tuyuy p Ny (18)
4 M ’ a ’

where go is the nucleon axial-vector coupling in the chiral
limit and the l; and ¢; are further low-energy constants.
The terms not displayed in Esf) couple to at least four
pion fields and will not be needed in our calculations.

For calculating nucleon matrix elements in the Breit
frame we need the residual momenta of the incoming and
outgoing nucleon,

r=p— Moyv=wv—A/2,

r'=p' — Myv=wv+ A2 (19)

with

A2

w=M(y—-1)+0M = ~3M —4eym? + 0(¢%),

where M = M — My is the nucleon mass shift. Using the
spinors (7) one obtains a matrix element as [20]

®'10Ip) = N?Zn Uy (p') Go(r',r) uu(p)

where Go(r', r) is the truncated Green function for exter-
nal heavy-baryon fields N,,, N, and the operator O in the
effective theory. Zy is the heavy-baryon field renormaliza-
tion constant,

(20)

(21)

3m*gs  9mPgs o m2
2dnF)?  A(4nF)? 8 2

— 8m®dgs(p) + O(¢)

In=1-

(22)

where djg(u) is a low-energy constant in the Lagrangian
E(N given in [21].

4 Chiral-even isotriplet operators
4.1 Construction of effective operators

To find the operators in the effective theory which match
the quark-gluon operators (2) in QCD we generalize the
construction of [13] to the isotriplet sector. The relevant
effective operators contain a part O, which involves only
pion fields (and couples to the nucleon via interactions
from L,n) and a part O,y that is bilinear in the nucleon
field. We thus have

Or‘? (a’) = Or‘?,ﬂ' (a) + On ﬂ'N(a)

O (a) = Oy 1(a) + Ol o (a). (23)
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where for the pure pion operators Oz (a) and (7);?’77(@ we
will use the form given in [12]. The pion-nucleon operators

07 n(a) and 6,‘;‘J n(a) are conveniently constructed by
first matching the operators

(0% (a)),, = m”%

(0L (@), = a5 d -

where 7 and j are isospin indices. They involve quarks of
definite chirality and transform as

. <_> —
(iaD)" lqz',

B oDy, (24)

Off(a) = Va OR(@) Vi, Op(a) -V, OF )V, (25)
unter chiral rotations. Parity transforms Of(a) and O%(a)
into each other. The corresponding effective operators that

are bilinear in the nucleon field can be written in the form
(QE(G’))” = (NU OIUT)] (’U/OQNU)Z )
(QL(@),, = (WOu), (w O4N,),

where Oy, O, transform like u, under chiral rotations and
1, O} are related to them by parity. The vector and axial
vector operators are then readily obtained as

(26)

O an(a) = Trr {Q} (@) + Qr(a) }
Opan(a) = Trr {Qfl(@) - Q (@)}, (27)
and will involve the combinations
A = utrdu £ urtul, (28)

where the subscript e indicates that they occur in chiral-
even operators. In the isosinglet case one has simply 72 L=

270 and 72_ = 0, whereas the isotriplet combinations
a b b
To, =277 +ﬁ7r (rort — 7br%) + O(x*),
2
TS = ~F eberbre 4 O(xn?) (29)

involve an even or odd number of pion fields, respectively.
The operators Oy, Oy can be constructed from the fields
u, and x+, and from the covariant derivatives introduced
in sect. 3. One can rearrange the covariant derivatives
in QF(a) and QL(a) to act either as total derivatives 9,
on the product of all fields or in the antisymmetric form
%H = %(?H - (ﬁ“), where ﬁ)u = 3# + I, acts on the
product of all fields to the right and <€u = gu — I, on
the product of all fields to the left. The operators Q% (a)
and QE(a) are tensors having n indices contracted with

the auxiliary vector a. Other than 9, %u and u, these
tensors can contain the vectors v, and S, and the totally
antisymmetric tensor. The number of spin vectors can be
changed using the identities

{S)\,S } = [S)\,SH] :iq“,,pv"S",

(U,\Uu g,\u) s

Sy = _% Exuvp VM[S”, 7], (30)
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where our convention for the totally antisymmetric tensor
is €y123 = 1. For the operators under discussion we chose a
basis where S,, appears at most linearly, or quadratically
as the commutator [S, S,]. For counting powers of ¢ one

associates chiral dimension 1 to J,, %u, uy, and chiral
dimension 2 to x.
We now make all factors of (av) explicit and write

n

ZMnkl(a,U)n kO ()

k=0

On 7rN( ) (31)

where (’),‘;‘,k(a) is free of factors (av). For contracting the
k vectors a* in O,‘ik(a) one can use S, only once, so that

this operator contains at least k — 1 vectors 9,,, §u Or 1.
Thus we can further decompose

ZM Onlm )’

i=—1

(32)

where (’)n k.;(@) has chiral dimension k + i. For (’N);‘L"ﬂN(a)
one has a decomposition in full analogy to (31) and (32).

4.2 Power counting for tree and loop graphs

As shown in [13] the chiral dimension of a graph with
two external nucleon legs and insertion of the operator

O'rzikﬂ( ) or Onk@( ) is

N
Dpi=2L+k+i+ Y (dimVy(j)—2)
j=1
NN
+ Y (dim Van(j) = 1),

=1

(33)

where L is the number of loops (with L = 0 for tree
graphs). V;(j) and V;n(j) respectively denote the j-th
vertex from £, and L,y in the graph, N, and N,y are
the corresponding total numbers of vertices, and I; and
In are the numbers of pion and nucleon propagators. Cor-
rections to the nucleon propagator from higher orders of
Lrn are counted as a nucleon-nucleon vertex and are ac-
companied by two (leading-order) nucleon propagators on
either side. Notice that 7# + r'* = 2wv* is of order O(q?)
and thus one order higher than the generic power asso-
ciated with a residual nucleon momentum. A graph with
chiral dimension Dy, ; can thus generate contributions to
a nucleon matrix element of order O(q?) with d Z Dy ;.
Since O 1.i(a) is accompanied by a factor (av)"~" in (31)
it can oniy contribute to form factors with at least n—k
powers of (av) in the decomposition (8) of the nucleon
matrix element. Taking into account the number N4 of
factors (aA) and (SA) in that decomposition, one can es-
tablish the order in the chiral expansion to which a given
operator can contribute to a form factor. The result is
given in table 1.
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Table 1. Overview of contributions to the chiral-even form
factors. The restriction in the second column is due to time re-
versal invariance. N4 is the number of factors (aA) and (SA)
in the decomposition (8). The indices of the operators must sat-
isfy I > k and ¢ > 0, and the corresponding graphs contribute
to the form factor at order O(q?) with d > Dy41, 1 —Na and
D1+1’,‘,1 from (33)

Form factor k Na Operators
Ep k41 odd k+1 Onit1,i-1
My, 1 even k+1 Oniy1,i-1
%,k even k (?:n,l+1,i—l
My, even k42 Oniy1,i-1

Throughout this paper we refer to orders O(q?) in the
chiral expansion of a given form factor rather than the
expansion of the corresponding matriz element. This is
most convenient for the problem at hand, since the chiral
order of matrix elements increases with the order n of
the operator, whereas the chiral order of the form factors
has as a natural point of reference the order O(¢°) from
tree level insertions of operators with the lowest chiral
dimension at given n.

The contributions of (’)A ;(a) and (’)A,c ;(a) at tree
level are readily evaluated. The tree level graphs do not
contain pions, so that one can replace

ut — 0, ot — 1AM, %“ — —iwvt,
7"2+ — 274, Ti — 0,
X+ = 2m37°, x_ — 0. (34)

Operators with $u do not contribute to the form factors
at leading order since w is of order O(q?). The different
types of higher-order contributions to the form factors are
discussed in sect. 3.2 of [13]. In the results we give for the
form factors, we lump them all into coefficients describing
the m? and ¢ corrections from tree graphs, except for the
terms proportional to g3 in the expression (22) of the wave
function renormalization constant Zx, which we combine
with the terms due to loop graphs.

The one-loop graphs with pion-nucleon operator in-
sertions are shown in fig. 1. The construction of operators
detailed in sect. 4.1 allows one to easily track the origin
of factors A, which arise from a graph and must match
the factors in the form factor decomposition (8). For this
we use that the denominators of the pion and nucleon
propagators are (I> — m? +i0) and (lv +w + i0), respec-
tively, so that the loop integration turns tensors l,, ...1l,;
into tensors constructed from v, and gy,. We ﬁnd that

with the leading-order (LO) interactions from Cﬁ A~ and

the next-to-leading (NLO) interactions from ESZ{, a fac-
tor A, which is not contracted to A? (and hence can be
contracted with a* or S*) can only originate from [13]

1) a total derivative 9, in the operator insertion,

2) aterm (lv)(SA) due to an NLO pion-nucleon vertex,

3) or a term (IA) due to an NLO nucleon propagator
correction.
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Fig. 1. One-loop graphs with the insertion of a pion-nucleon operator O, »n(a) or Oy »n(a), which is denoted by a black blob.
Not shown is the analog of graph ¢ with residual momentum ! + wv + A/2 of the intermediate nucleon line.
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Fig. 2. a and b: One-loop graphs with the insertion of the pion operator O, (a). c: Tree graph with the insertion of the pion
operator Oy »(a). The operator insertions are denoted by black blobs.

We further find that two factors of A, which are not con-
tracted to A? can originate as (1A)(AS) from the NNLO
pion-nucleon vertex generated by the term

go —=
4M2

N AV @Y) + (Tu)(sTH} N, (35)

of the Lagrangian Eg{, given in [21].

In the next section we will see that O}, ;_,(a) and

O} 141.i-1 (@) with i = 0,1,2 have at most I+ total deriva-
tives 8 A one-loop graph with insertion of such an op-
erator and pion-nucleon interactions up to NNLO must
therefore satisfy

I+i+ Z dim Ven(j) = 1) > Na (36)

in order to produce the number N of factors A, required
to contribute to the form factors in table 1. For ¢ > 2
and for pion-nucleon interactions higher than NNLO this
inequality is trivially fulfilled. With the power counting
established in the table, one then finds that the one-loop
contributions from pion-nucleon operators for all form fac-
tors start at order O(q?).

Let us finally return to the contributions to the nucleon
matrix elements from the pure pion operators (’);‘l"ﬁ(a) and

(’N),’;‘J(a). Their chiral dimension is [13]

N
Dr=2L-1+d,+ Y (dimVa(j) —2)
j—l

+Z dimVen () = 1),  (37)

where d; > n is the chiral dimension of the pion oper-
ator. Because of parity invariance the vector operators
Oy,» couple to 2 or more pions, whereas the axial vec-
tor operators O; (a) couple to 1 but not 2 pions. Start-
ing at order O(¢"~*) the form factors E, x4+1 and M,k
thus receive corrections from the one-loop graphs shown
in figs. 2a and b. For isotriplet pion operators n is odd
due to charge conjugation invariance. Together with the
time reversal invariance constraints on the nucleon form
factors, one thus finds that the corrections to EI | start

at O(¢?) and those to M/[T! | at order O(g), whereas for
all other form factors En,,c_,_1 and M,IL,,C1 they are at least
of order O(g?).

The axial vector operator O; (a) contributes to nu-
cleon matrix elements starting with the tree level graph in
fig. 2c. The n vectors a* in the operator are all contracted
with derivatives acting on the pion field and hence with
A, after evaluation of the graph. The same is true for
the corresponding one-loop graphs. One thus obtains only
contributions to the form factor M, , i, starting at or-
der O(q=?) for the tree graph. With two loops one has
graphs where three pions couple to the operator on one
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side and to the nucleon line on the other. Such graphs
can contribute to other form factors, but only starting at
order O(q*).

5 Results for chiral-even isotriplet form
factors

5.1 Relevant operators and graphs

With the method outlined in sect. 4.1 one finds vector
operators

O i1 1 = ELY (1ad)* N, (aS) TNy + ...,

O hi10 = %Eri(lgj-l (iad)**' N, 724 N,
— 3M] Y (ia8)* i0,N, [(aS), S*TA Ny + ...,
O jar = iM'ri(kO) (iad)*+ g, N, S*74 Ny + ...,
(38)
where the ... stand for operators which have fewer total

derivatives and as in sect. 2 the isospin index I = 0 belongs
toA=0and I =1 to A =1,2,3. The axial vector oper-
ators are simply obtained by interchanging T’cf‘+ and 74,

Otk 21 = E1) (100) W, (aS) &y N .
O piro = LELYL, (100" N, 74 N,
— 1M, (i00)" i0,N, [(a8), S*)r AN, + ... |
62‘,k+1,1 = %Mi’(ko) (iad)**1 i, N, S"T?+Nv +....
(39)

Using the rules (34) and the decomposition (8) the
coefficients in (38) and (39) are easily identified as the

tree level contributions to the form factors E,ﬁ’k(t),
B, . (1), MI, and M] at order O(¢q°). Time reversal

0 g only nonzero for odd

41
k, whereas the other coefficients Mi(,?), Efl(,?), Mfl(,?)

are only nonzero for even k. For A = 0 we recover the
isosinglet operators constructed in [13].

According to (29) insertions of an isotriplet operator
with 77 require at least one pion line in the graph and
hence do not contribute to nucleon matrix elements at tree
level. They appear however in the one-loop graph shown
in fig. 1c. When the pion-nucleon vertex in this graph is
taken at LO one finds zero, because the loop integral is of
the form

. . . I
invariance implies that E,

/d4—Qel (Sl)
(lv+w +140) (12 —m? +1i0)’

(40)

whose numerator is proportional to (Sv) = 0 after the
integration. Calculating the same graph to the next or-
der, one finds that the contribution from the NLO pion-
nucleon vertex cancels the one with the LO pion-nucleon
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vertex and an NLO nucleon propagator correction. This
holds true for all operators with 7¢ in (38) and (39) and
only requires that the operators does not introduce any
dependence on the loop momentum I, via v p OT Uy
The operators with 7/, contribute at tree level and via
the loop graphs in figs. 1a and b. They are constructed
such that after the replacement 9, — iA, they match
the structure of the terms in the form factor decomposi-
tion (8). That structure can be changed in loop graphs
only when the spin vectors in the operator insertion are
multiplied by spin vectors from pion-nucleon vertices. This
is not the case for the graph in fig. 1b, which originates
from the two-pion term in the expansion (29) of 7%, and
thus reproduces the spin structure of the operator. Let us
show that it is not the case either for the graph in fig. 1a
with LO pion-nucleon vertices. The numerator of the cor-
responding loop integral has the form (S1)O(Sl), where
O contains zero, one or two vectors S, and represents
the spin structure of the operator. The loop integration
turns a tensor [, ...l,; into a combination of v, and gy,
and thus (SI) O(SI) into S?OS,. This preserves the spin
structure of O because
- d) 3

SPSYS, = ~(d—3)S*,

1
4
515,518, = (5 - d)[5*, 5] (a1)
in d dimensions. We also need graphs with one LO and
one NLO pion-nucleon vertex, or with two LO vertices
and an NLO nucleon propagator correction. Restricting
ourselves to the terms producing the required factors of
A, as discussed in sect. 4.2, we obtain numerators of the
form (Iv)(SA) O (Sl) or (1A)(S1) O (Sl), which gives zero
after loop integration.

In summary, the insertion of an operator from (38)
or (39) into the graphs discussed so far either gives zero
or contributes only to the same form factor for which it
already provides the leading-order tree level result. This is
however not true for the graph in fig. 1a with one NNLO
or two NLO pion-nucleon interactions. In this case one
obtains terms (SA)O(SA) after loop integration, which
do change the spin structure of O.

5.2 Vector form factors

From table 1 it follows that E , ., and M can receive
contributions from one-loop graphs with insertion of oper-
ators Op i41,i—1 With [ > k and ¢ > 0. With the additional
condition (36) required to produce enough factors of A,
we find that the form factors receive corrections of order
O(q?) from graphs with LO pion-nucleon vertices and in-
sertion of the operator O, j+1,0, which already gives the
tree level contributions at order O(¢°). By power counting
one could also have order O(q?) contributions from graphs
with insertion of O,, 42,1 or Oy k41,1 and pion-nucleon
interactions at LO or NLO, respectively, but these vanish
because the relevant operators come with 77 . The one-

loop corrections from pion-nucleon operators to Eézkl (t)
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and M[Z!(t) are then found to be

2
B0 (o T 1 P
n,k (47!'F)2 (3gA + ) Og ,LL + gA
+0(4),
- m?
Mé7k1(0) <1 — 7(47rF)2 (294 + )log + 29% )
+0(¢%), (42)

respectively, where we have replaced the bare axial cou-
pling go by its physical value g4 as is permissible within
the precision of our result. Likewise, we could replace the
bare pion decay constant F' and bare pion mass m by
their physical values F; and m, (we refrain from doing so
for ease of notation). The contributions with g% in (42)
are due to the graph in fig. la and the nucleon wave
function renormalization, and the contributions without
g% come from the tadpole graph in fig. 1b. As in [13]
we use the renormalization scheme of [22], subtracting
1/e+log(4m)+1(2) for each 1/e pole in 4 — 2¢ dimensions.

The form factors En 41 () and Mé’k also receive chi-
ral corrections from loop graphs with pion operator inser-
tions. In the notation of [12] the isotriplet operators with
lowest chiral dimension are?

Oy x(a) = 2(~)n,n_1 (iad)" " (aV'?)

n—3
+ 2% 3 by (iad)" [(aLb) (2ia9 )"~ ~2(aL®)
b .
+ (aR") (2ia8)" " 2(aR7)],  (43)
where
Vi =—5iF*(L, + R},
Ly =U'9,U, RiT"=UQ,U'. (44)

To extract the terms coupling to two pions we use the
expansion Li = i8,n"/F + ie***7*d,7¢ /| F? + O(x®) and
its analog for R}, obtained by changing the sign of the
pion field®, and obtain

O?L,ﬁ(a) = _2i€abc {I;n,nl (Zaa)n ! b(za@w )

—2 i bk (iad)F [(ia@wb) (2iad )2 (mam] }

+0(r"). (45)

2 The normalization of the twist-two operators (2) used here
agrees with the one in [13] and differs from that in [12] by a
factor of 2. The coefficients b, ; have the same normalization
here and in [12].

® We note that the sign of the term with ¢*** in eq. (32)
of [12] is incorrect.
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Using the relations

4(iad7°) (iad7°) = (1ad)* 7’7 — 7 (2ia<§)2 ¢

2¢ter (iadn¢) = e*er (2ia<5>)7rc

we can rewrite this as

n—1
08 1(a) = —ie® 3" AT (jad)* [wb (ia )"~k ¢

k=0
even

+0(r%), (47)

where Agf,?) = 2”’k(l~)n’k — En’k72) with b, 5 = 0. The
coefficients AZ’(,S) represent the chiral limit of the form

factors A7 ;(t) which parameterize the moments of the
pion GPD as [12]

n

/1 dxw”_lH,{(ac,f,t) = Z(%)’“AZ,k(t)a
—1

k=0
even

(48)

where in terms of quark flavors in a 7% one has HI=0 =
H*+ HY and HI=' = H* — HY. Because of isospin and
charge conjugation symmetry one has I = 1 for odd n and
I =0 for even n and therefore can omit the isospin index
I'in A7 ;.

As discussed after (37), the graphs in figs. 2a and b
with insertion of Oy  (a) give rise to corrections which
start at order O(qZ) for EIZ!, and at order O(q) for
M!I=! . Together with (42) and with terms due to tree

n,n—1-
level operator insertions, the complete results to order

O(q?) read
By (t) =

2
gI=10) (4 _ m
.k (47F)>

+ 8 Epn 37 (2)

n,n—1

)

303+ 1o 20

+EI 1(2,m) m2 +Efl’:/cl(27t)t+0(q3)a
My (1) =
I=1(0)

5 1

+ 5k7n_1 [MI:1(17W) (t) + MI:1(2,ﬁ)(t)]

n,n—1 n,n—1

(4:;)2 [(2gi+ 1)log o +29A]>

+MI 1(2,m) m2 +Mé7:kl(2,t)t+0(q3), (49)
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where the contributions

EI 1(27T)( ) —

n,n—1

1 -~ . m?
JE— E 2774 Aﬂ' (0) {4 2 2 1 e
2(4w F)? = I fnin—j | HAT 08 u?

odd
1 2
+ / dnn’=! [g% (2m> —t) <log m'ugn) + 1)
-1

2 m? (n)
(n) log 2 ] } ,

—(ga—-1)m

MI 1(1 7T)( ) —

n,n—1

G ZWAnM/ dnn'~m(n)  (50)
odd

with

(51)

are due to graphs with pion operator insertions and LO
pion-nucleon vertices. The order O(g?) correction

Min“f“)()—
m2
2(4 F 22 ]]AZ(S)J{ZLQ m log
odd

1 2
+ / dpni~! [gi (2m® —t) <log o 277) + 1)
-1 M

<)

is due to graphs with one NLO pion-nucleon vertex or nu-
cleon propagator correction, as well as graphs with LO
vertices and the subleading part wv* of the residual nu-
cleon momenta, cf. the discussion after (33). The terms
proportional to g% in (50) and (52) are due to the graph
in fig. 2a, and the other terms to the graph in fig. 2b. Our
expressions (49) and (50) agree with the results in [14],
where the order O(¢q?) corrections to ELZ! | and the or-

der O(q) corrections to MIT1 | are given.

+ (9% — 1 —4Mecy) m?(n) log

(52)

5.3 Axial form factors

Using table 1 and the condition (36), one readily finds
that the chiral corrections of order O(g?) to the form fac-

tor E{L © are obtained from graphs with LO vertices and

insertion of the operator 6n,k+1,_1, which already gives
the tree level contributions at order O(¢°). Together with
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higher-order tree level insertions we get
E5H (1) =
2 m2
=I=1(0) m
Emk <1 - (471'F)2 (29A + 1) log + gA:|>
+EI 1(2 'm) +EI 1(2t t+0(q3)’ (53)

in agreement with [14]. The discussion of contributions to
Mé & is more involved; for the isotriplet case it proceeds
in close analogy to the isosinglet case analyzed in [13].
According to table 1 and the condition (36), one ob-
tains order O(q?) corrections from graphs with insertion
of Op pr11 and LO vertices. Further corrections are due

to graphs with insertion of Oy, 41,-1 and two NLO pion-
nucleon vertices or nucleon propagator corrections, or with
one NNLO pion-nucleon vertex generated by (35). Graphs
with the same operator insertion and two loops or one

loop and a pion propagator correction from c‘;‘) could
contribute by power counting but do not produce the re-
quired factors of A, (see [13]). Graphs with insertion of
On k42,0 or Oy k41,0 and pion-nucleon interactions at LO
or NLO give zero because these operators involve 7¢

e—>
as discussed after (40). Graphs involving O, 42,1 and
NLO pion-nucleon interactions do not contribute to M,
due to time reversal invariance, since the operator is only
nonzero for odd k and the form factor only for even k.
Finally, graphs with insertion of O, j4+3,—1 and LO pion-

nucleon vertices contribute to B!, , but not to M, as
discussed at the end of sect. 5.1.

Together with higher-order tree level insertions, the
one-loop graphs with (’)n k+1 1 or On k+1,—1 thus give
the full result at order O( 2) for the form factors with
k<n-1,

MISY ) =

—~ 2
Miil (0) <1 _

+9A

)

(54)

(295 + 1) log

m2
(47 F)?
2 2 2

= 1(0) M ga
E, log —
+ 3(4nF)2 8 2
+ Mi’:kl@’m) m? + Mi’:kl(u)t +0(¢%).
The form factors M,Im 1 require a separate discus-
sion because they receive a contribution starting at order
O(q~?) from the one-pion exchange graph in fig. 2c, as
discussed at the end of sect. 4.2. The relevant operator is

given by

6277r(a) = 2Bn,n*l (iaa)nil(aAa)

Iy 5
|:].+<2F2 Cn>rI‘I‘X+

with odd n and

+0(g"**) (55)

A% = —LiF?(R® — %),

" M (56)
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where En,nq is the same as in (43) because of parity in-
variance. [ is the renormalized low-energy constant from
the pion Lagrangian (17) and appears in the expression of
the axial current,

,
%évwsf"q = Af [1 + %Trm] +0(°), (57)
so that IN)LO =1 and ¢ = 0. One can readily derive (57)
by coupling the Lagrangian to an external isovector ax-
ial field a, as usual [19], which implies u, = i(ufd,u —
udu®) +ula,u +wua,ut. As an aside we note that the cor-
rection with /] in the axial current (57) would be different
if one used the pion Lagrangian from [22], where the term

involving this low-energy constant reads

Ut [0 @) + @@ 0] =
ls

3 {Tr X+ Tr(u,ut) + 2 Te [V, x—

] ut } .
In the present work we follow ref. [18] and use the La-
grangian (17) from [17]. It differs from (58) by total deriva-
tive terms and terms that vanish by the equation of mo-
tion. With the full Lagrangian given by L, + L,n the
equation of motion for the pion field involves terms bi-
linear in the nucleon field*, so that a change of £, using
the equation of motion induces a corresponding change in
Lrn. We also refer to the discussion in [23].

The coefficients i)nm_l and ¢, in (55) appear in the mo-
ments of the twist-two pion distribution amplitude ¢, (),
which are defined by

(58)

/g: i) (7 (p)| G(—na) dys ™ q(na) [0) =
— 10 Fr () (59)
and )
B =27" /71 dzz" ¢, (z), (60)
so that
(7" (p)| O3 - (a)|0) = =2i6" (ap)" F,. By . (61)

Calculating the leading chiral correction to this matrix
element one finds that /] only appears in the expression
of the pion decay constant,

2 m2

m m2 r

(62)

4 With an arbitrary matrix X in isospin space and X =
X — L Tr X, the leading-order equation of motion reads
2 Tr [V, '] X + Trx- X = F7* N, [(vu) + 4igo (SV), X | N,

— 4igoF 29" (N, S.XN,) .
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and ¢, only in the correction to the moments

Bl =b, .y (1+4m?¢,) + O(m*). (63)
The definition of the pion decay constant implies B =
to all orders in the chiral expansion.

Returning to the nucleon form factors Mnn 1

readily finds their lowest-order contribution to be

one

rI=1(—
n,n—1

n(0) 4M2g0
n

m?2 —

2(t)=B (64)

with B;{(O) = I~)n7n_1. The leading corrections to this
come from a number of higher-order operator insertions
and loop graphs. A tadpole insertion in the pion line of
the graph in fig. 2c and the propagator correction from
the I3 term in the pion Lagrangian (17) result in a shift
m? — m2 in (64), where

2 2 m’ m’ 2m2 T 4
mi=m <1+ S F)? log F2 15(n) + O(m )) .
(65)
The pion propagator correction from the I term in (17)
cancels against the I4 term from the operator (55). A tad-
pole insertion at the operator vertex gives a chiral loga-
rithm as in (62). Further corrections are due to loop cor-

rections to the pion-nucleon vertex, to tree level insertions
from 553)\,, and to the factors N2 and Zy in the matching

formula (21). Together with the tree level insertion of the
pion-nucleon operator On .1 from (39) we obtain
MTIL:’I’Ll 1(t) =

2
B (0 R 262 + 1)1
n m2—t< (47TF)2 [( gO+ )Ogﬂ +gO:|
o (2d7s — dyg) — 8mPdg + 4m25n>

+ M5 1+ 0(q) (66)

with the low-energy constants dis(u), dig and dig(p)
from [21]. To make the pion mass dependence fully ex-
plicit, one should replace M? = Mg —8m?Mqc; + O(m?).
Conversely, we can use (63) and the one-loop expression
Y P (292 + 1) log % +

+4m2gy d g — 8m2d£8> + O(mS) (67)
of the axial coupling (see, e.g.,
as

[24]) to rewrite the result

< AM? g,
(t) = By Q_t

MII

n,n—1

(1 — 2m72rg;1d18)

(68)

in terms of the physical quantltles Bn, ga, M, m;, and the
low-energy constants d;g and M= 1(0) . With the transfor-

n,n—1
mation (10) and the definitions (5) and (60) of moments
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one finds
E'=Y(,6,1) =
0z < &) x\ 4M3?g, 2 1
T ¢w(z) W (1 —2mz g, d18)

+E710,6) + 0(q), (69)
which generalizes the well-known relation from [25,26] to
next-to-leading order in the chiral expansion. For n = 1
our result (68) is consistent with the one for the pseu-
doscalar form factor in [18,27]. We also agree with the
result of ref. [14] if in their eq. (66) one adds a term
Sk 2gAMP(r3) (228 /2%,

6 Chiral-odd generalized parton distributions

In this section we consider the general parton distributions
associated with chiral-odd operators. As in the previous
sections we restrict ourselves to the twist-two sector. The
relevant GPDs of the nucleon are defined by?®

dn )
[ e (N a(- dna)baanio™ 4 a(hna) |V, ()=

AAR — AAyE
2M Er

A 1

Tij 9qp A a(p') liaA"H% +

oMW AR A, —igPY AMA, ~ APH _ PAyk -
- WE H%-l-’y i E% u(p) .

(70)

In addition to the light-like vector a we have introduced
a vector b satisfying ab = 0, and for brevity we have sup-
pressed the arguments z, &, t of the distributions®. Their
Mellin moments are related to the matrix elements of the
chiral-odd twist-two operators

A
OT}\Mluz---un -

T A S

_ =g =g A
qoxp, 1Dy, ... 1D, T q,
AB1 - AT 1. fn

(71)

where T and S are defined as in sect. 2 and where A de-
notes antisymmetrization, Ay, t** = $(t* — t#}). These
operations are conveniently implemented by contraction
with the auxiliary vectors a and b, given that for any ten-

5 We have traded the distribution E7 in the qg‘iginal decom-
position [28] for the combination Er = Er + 2H7, which nat-
urally appears when representing the distributions at £ = 0 in
terms of densities in the impact parameter plane [8].

6 Instead of contracting o with auxiliary vectors one often
takes definite indices o'*, where i = 1,2 denotes a transverse

component and + the plus-component in light-cone coordi-
nates, i.e. o't = (¢° + ¢%%)/V/2.
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sor tAH1Hn gatisfying $AH1K2 Hn = 1AMz ln one has
A1 efin
bxay,ap2...a,, T A § Mk =
AMA - ofin AT HA-eefhn
1
baGy,, Qyo - .., — | tAHIH2 b
H1Pp Hn Mm
n
+ E FAB2 BB il 1A 2 fn
=2
n
_ § tH1H2---Hz'AHz'+1---Hn> —
=2
n+1 A
H1---Mn
5 brGu, Qpy - -Gy, t . (72)

where symmetrization in us ... pu, is guaranteed by con-
traction with identical vectors, and where trace subtrac-
tion terms are removed by the conditions a?> = ab = 0.
The (n — 1) terms of the second sum give zero due to the
antisymmetry of ¢ in its first two indices. We therefore
define the contracted operator

2n

0%, (a,b) = T Va'ra2 ... atn

A
OT/\Hluz---Mn

= gbratioy, (iaﬁ)”flTAq, (73)

whose nucleon matrix elements are parameterized by

n—1

(Ni(p)| OF,(a,b) [Nj(p)) = 75 > (aP)"*" (al)*
k=0

AR — AAyH 5

- Apopal
10" Ay + Wi Tk

x bra,, u(p')

_ieVARA, g A,
IM?2 Tn,k

’YAP“ — P)"Y” Bl
Tar Pk

(p) - (74)

The moments of the chiral-odd GPDs are then expressed
as [29]

n—1

1
/ dz 2" ! Hp(z,&,t) = Z(—Qf)k Arni(t),
1

1 n—1
/ dea" ' Ep(z,6t) =Y (=2)" Bras(t),
1

n—1

1 N _
/ dez™ ' He(z,&,1) = (—20)* Apa (1),
1

- k=0
even

n—1

1
/ dgz™ ! ET(ac,f,t) = E (—2§)k§Tn7k(t)a
-1

k=1
odd

(75)

where we have omitted isospin indices I in the distribu-
tions and form factors for ease of writing. The restrictions
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to even or odd k for the form factors reflect that Hy, Er

and I;'T are even in ¢ and ET is odd in £ due to time
reversal invariance [28].
Using the relations (9) in [13] and

VXAR — ph AN

a(p')ioMu(p) = iy (p') [27 [S*, 5] + i

n [SA, (SA)]A# — [SH, (SA)| AN

2M2(1+ ) (76)

uy (p)

one can rewrite the decomposition (74) in terms of the
heavy-baryon spinors (7) and obtains

(Ni(p")| OF,,(a,b) [N;(p)) =

i Y (M7)" " (a)" T (@A) bray,

i
o

X Uy (pl) 2’7 [SA, Sﬂ] E"%n,k

| [ (548 — (st (SA A

2M2 Tn,k
SA,(SA)wk — [SH, (SA) >
_1_7[ (54)] M[ (54)] L
VXAR — kAN
—————— My, ;| uu(p) (77)

2M
with new form factors given by

ETn,k = ATn,k ’
Mg, = (1+ ’7)_1ATn,k + B — 2A7, 1 -

ETn,Ic = BTn,k )
2

Mypp o = Agppp + ETn,k BRI Atpi > (78)
or equivalently
_ 1 A2 - ~
BTn,k = ? [MTn,k T A MTn,k - ’YETn,k:| ;
Tn,k 9~2 [MTn,k MTn,k - mETn,k] . (79)

We finish this section by defining chiral-odd GPDs in
the pion,

dn )
/ i@ (7e(p))| g(—Lna) baay o™ 74q(Lna) |7 (p))

4
1 1 PrXAr — AAPH
=3 Tr(r707°) 5P bra, Epq(3,6,1),
(80)

where as in the nucleon case, isospin I = 0 corresponds to
A=0and I =1to A =1,2,3. In terms of quark flavors in
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ant onehas Ef7° = By +Ef _and Ef7' = B} —Ef_,
with the definition

dn .
/ D1 ian(@P) (1 (1)~ Lya) bra io ™ u(bna) |7 (7))

4
_ 1, Par-apr
= 9qp m,

Efp(z,€,1) (81)

and its analog for d quarks. For the local twist-two oper-
ators, one has

(70| O (@,8) |7°(p)) = = Te(r47°7%) bya,

2
P AR — AAPR S .
X > (aP)" 1 (aA)* B, 4 () (82)
™ k=0
with
1 n—1
[ e U Ef w60 = Y20 B, ()
—1 k=0

even

where the restriction to even k is a consequence of time
reversal symmetry. Due to isospin and charge conjugation
invariance, n is even for I = 0 and odd for I = 1, so that
we do not need an isospin label for BT

7 Chiral-odd effective operators

In this section we explain how to construct the operators
in the effective theory that match the chiral-odd quark op-
erators (71), closely following the strategy used in sect. 4.
To this end we first match the operators

_ . 1479, <,
(O;\{z’n(a))ij =4qj io™ B (iaD) ! qi,

_ . 1 - . 2
(OFrn(@),; = Gio™ =7 (iaD)" ' qi (84)

with open isospin indices 4, j, which involve quarks of
definite chirality. The corresponding uncontracted opera-
tors 2q;ionu, (1£75)iD , - . .iD,,, q; do not have definite
twist, but according to (72) their twist-two part is readily
projected out in bya, (’)})‘{i’n(a) and bya, Oz‘é’n(a). The
operators (84) transform as

O} o(@) = VRO (@) V],

A A
Orhnla) = Vi, 07 () Vi (85)
unter chiral rotations and are transformed into each other
by parity. Because o 5 = —%ie)‘“ag o8 they obey the
duality relations

i o
O;\{z,n(a) = _EGAHQﬂ ORLZm(a) )
O (@) = 5Mas O, (a). (86)
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The operators 0%, (a,b) from (73), which correspond to
twist two and to definite isospin, are obtained as

O7y(a,b) = baa, Q7 (a),

Qi (a) = Ter {ONs (@) + O (@)} . (87)
They will involve the combinations
A = utrtut £ urtu, (88)
whose expansion in pion fields reads
1
=2 = o + O(r),
22 a, a
= T +0(7*),
a a a, b b 4
Toy =27 — T + O(7%),
9
Tg,:—ﬁ% +0(%). (89)

As for the chiral-even case discussed in sect. 4.1, the op-
erators which match (84) in the effective theory and con-
tribute to nucleon matrix elements are either bilinear in
the nucleon field or contain only pion operators. We treat
the two cases in the following two subsections.

7.1 Pion-nucleon operators

The effective operators which are bilinear in the nucleon
field and transform as (85) can be written in the form

(ORL n(a)) (Nv Olu)] (UOQNv)i ,
(OLR n(a))” = (Nv Oll'U/T)] (UTOIQNU)Z,,

where O;, O, involve the fields u,, x+ and covariant
derivatives and transform like u, under chiral rotations.
O] and O} are related to O; and O by parity One can
rearrange the covariant derivatives in ORL , and O Ron
such that they act either as total derivatives Oy or in the

LV V.

To obtain the general form of (’)RL ,, and Oé’é’n it is

(90)

antisymmetric form vV, = =

sufficient to construct corresponding operators O that
involve no € tensor and either no spin vector or two spin
vectors in the form [Sx,S,]. Operators with one e ten-
sor and one spin vector can be brought into this form
by using the third relation in (30) and rewriting the re-
sulting product of two € tensors in terms of products of
metric tensors. Terms in (’)RL , and (’)LRn with an odd
total number of € tensors and spin vectors are then read-
ily obtained by adding the dual operators 3ieM .5 O
with coefficients determined by the relations (86), using
that TieM o5 1P 5170 = t* for any antisymmetric ten-
sor 1M,
Following the procedure of sect. 4.1 we decompose the
pion-nucleon part of the operators Qﬁ)‘“(a) as
Q’r/\zlwa(a

)= 3 M )R QM (a), (91)
k=0
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Table 2. Overview of contributions to the chiral-odd form
factors. As in table 1 the restriction in the second column is
due to time reversal invariance. Na is the number of factors
(ad), (bA) and (SA) in the decomposition (77). One must
have [ > k — 1 for ETn ks MTn k and [ > k for ETnk7 MTnk,
and ¢ > 0 for all cases. The corresponding graphs contribute

to the form factor at order O(qd) with d > D;; — Na and Dy ;
from (33).
Form factor k Na Operators
Ernk odd k+1 QM
Mtk even k+1 Q;\L““
Ernk even k Qi““
Mo i even k+2 Q;\L““

where we have omitted superscripts A for ease of writ-
ing. The operator Q;\L"k(a) is the contraction of a ten-
sor of rank k + 2 with k vectors a and may not contain
any factors (av). The minimal number of vectors J,, \Y s
u, in Q:‘Lf‘k(a) is k — 1 and must be accompanied either
by the tensor v*[S¥, (aS)] — v*[S?, (aS)] or by its dual
i v, [Ss, (aS)]. In the first case one obtains, however,
the structure (av)[(bS), (aS)] after contraction with bra,,
which also appears in bya, (av)"* Qn w_1(a). An anal-

ogous statement holds of course in the case of the dual
tensor. We can therefore restrict ourselves to operators

Qz‘fk(a) with at least k vectors 0,, ﬁp, u,, and thus fur-
ther decompose
A —i A
Q@) =D MTQ i(a),

=0

(92)

where an ;(a) has chiral dimension k& + i. The power
counting for graphs with a certain operator insertion pro-
ceeds in close analogy to sect. 4.2 and is summarized in
table 2. Comparing the number of factors (av) in (91)
and in the decomposition (77), one obtains the restriction
[ > k for the operators Q (a) that can contribute to

n,l,i
Eka and Mka. For ETn,Ic and MTn,k the restriction is
[ > k—1, where the case [ = k—1 requires that the graphs
with insertion of Qn 1.:(@) produce no factors of v or vk,

7.2 Pure pion operators

Pionic operators which transform according to (85) can
be written as

ORL n( ) = UOU, OLR n( ) = UTOI’U‘T’ (93)

where O and O' are related by a parity transformation,
transform like u, under chiral rotations, and are con-
structed from the fields u,, x+ and covariant derivatives.
We can restrict the derivatives to act only on fields in-
side O and O'". With the duality relations (86) one finds

" Other terms can be brought into this form using identities

such as 0, (uOu) = u([V,, 0] — £{u,,0})u
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that the pure pion part of the operator Qﬁ”\“(a) can be
brought into the form

Tr I:T;‘+V)“U' (a)] + ;—.GAWXB Tr I:T;t Vag (a)] or

Tr [T;‘_ A)‘“(a)] n %e*wﬁ Tr [T;; Aaﬁ(a)} . (94)
where V), and A, respectively, behave as a tensor or a
pseudotensor under parity and are constructed from u,,
V, and x4+ without the e tensor. One readily finds that
the terms without € in (94) couple to an even number
and the terms with € to an odd number of pion fields.
Vau(a) and Ay, (a) are tensors of rank n + 1 contracted
with n—1 vectors a. In the following, we consider the terms
with the lowest chiral dimension in the pure pion part of
04, (a,b). These terms contain no fields y+ and have the
vector indices of all n+1 factors u, or V, contracted with
either a or b.

To calculate matrix elements of these operators be-
tween two nucleons or two pions at one-loop accuracy,
we only need terms that couple to at most four pions.
Terms coupling to three or four pions can appear in tad-
pole graphs. Such graphs are only nonzero if the pion fields
in the operator which couple to the loop have no deriva-
tives acting on them. This is because the corresponding
loop integral has a numerator of the form [, ...l, ., where
[ is the loop momentum. After the loop integration, one
obtains zero for odd m and for even m one obtains a com-
bination of metric tensors, which gives zero when the vec-
tor indices are contracted with a or b.

Since the derivatives with indices A and p in the anti-
symmetric tensor Qﬁ’)‘“ (a) cannot act on the same pion
field, one readily finds that operators coupling to one or
three pions do not contribute to matrix elements between
two nucleons or two pions. For the same reason such oper-
ators decouple from matrix elements between the vacuum
and a single pion, which reflects the fact that there are no
chiral-odd pion distribution amplitudes of twist two.

It remains to construct operators Vy,(a) and Ay, (a)
from u, and V,, which must have at least one factor u,
because the covariant derivatives must act on some field
to give nonzero, and less than three such factors because
of the restriction just discussed. The operators with one
factor of u, are of the form®

(aV)Fr VX (aV)*2 ut — (X & p) or

(aV)* VA (aV)*2 V# (aV)*2 (au) — (A < p) . (95)

In both cases we can use the commutator identity
[V, VA0 = +([u®,u’] O — O [u®,u”]) to bring the vec-
tors with indices A and p next to each other. The com-
mutator terms do not contribute to the matrix element
in question since they involve three or more vectors u,.
The remaining term involves either V*u# — V*u* = 0 or
[VA,V*#]...(au) and thus do not contribute either.

The only relevant operators contain hence two vectors
u,. According to our above discussion, the I, part of any

8 For simplicity, we write from now on V,(O instead of
[V, O] if O transforms like u, under chiral rotations.
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factor V,, does not contribute in this case, and the deriva-
tive must act on the pion fields in u, which already carry
a derivative. For the matrix elements in question, V* (au)
is hence equivalent to (aV)u*. The same holds of course
for the index pu. We thus find that the operators of lowest
chiral dimension can be written as

F2 n—1 .
QAN (a) = = > by Terd (iaV)F V4L (96)
k=0

even

with
Ao . E\n—k-1 " " . E\n—k—1_ )
Vop =u” (2iaV) ut — ut (2iaV) ut,  (97)

where the ... denote terms not contributing to two-
nucleon or two-pion matrix elements at tree level or one
loop. We note that the coefficients bry ; have nonzero
mass dimension and are of order (47F)~! in the sense
of chiral power counting. They give the tree level contri-
bution at order O(¢°) to the pion form factors BF,, ,(t)
defined in (82),

B;T—’?(,S;c — (_1)n+1 2n7k71

(98)
where n is even in the isosinglet and odd in the isotriplet
case. The restriction to even k in (96) corresponds to the
one in (82).

We can now apply the power-counting formula (37)
with d; = n+ 1 to the operators just constructed. Taking
into account the restrictions of even or odd n or k for the
different form factors, we find that the corrections from

pion operator insertions start at order O(q) for M%:l

n,n—1
and at order O(¢?) for M7\ 1, Ef0 | and M70 ..
For all other form factors they start at order O(q®) or

higher.

Mgy an,ka

8 Results for chiral-odd form factors

Using the construction described in sect. 7, we find pion-
nucleon operators

710

QAN = EIO) (iad)* (m[sk,su]rgm

n,k,0 —
+ N, (v SH - UHSA)T;}_N,J) +...,

Qpidt = =2 Mp\0) (iad)* (10" —v0") Nt N,

+ ie)‘“aﬁvaagﬁva_Nv)

+ %E:I,,S?)k (iad)* 8, (’U'uﬁ'u [S*, 57] 724 Ny

— v N, [S*, SP] T N, + {terms with 7/ )
+o.,

QA,AH —

1— _
= = M70) (1a0)" 9, (0 NLIS*, 7T N,
— 0 N, [S*, SP]Tf+Nv + {terms with T?_})

I (99)
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where the ... denote terms with a smaller number of total
derivatives. The coefficients in (99) are the tree level con-
tributions at order O(q") to the respective form factors
and therefore only nonzero for even or odd k as given in
table 2. The terms with 7 in the last two lines of (99)
are rather lengthy and not glven here Indeed, one finds
that none of the operators with 74_ in (99) contributes in
one-loop graphs with pion- nucleon 1nteract10ns at LO or
at NLO. Such graphs have the form of fig. 1c and give zero
for the same reasons discussed after (40) for the case of
operators with TA The discussion at the end of sect. 5.1
also applies to the operators with 7'0+ in (99), so that
their insertion into graphs with LO pion-nucleon vertices
or with one NLO pion-nucleon interaction contributes only
to those form factors for which they already provide the
tree level result at order O(g°).

An operator Qn“ in (99) has at most [ + ¢ partial
derivatives, so that the condition (36) holds also in the
chiral-odd case. Together with the power counting follow-
ing from table 2, one again finds that one—loop correc-
tions to all form factors start at order O(g?). One finds
that the order O(g*) corrections to Mr, X and Er, 1 come

from @ k1, whereas those to ETn , and MTn & come from
Qn,k0 and Qn,k,2, respectively, with pion-nucleon interac-
tions taken at LO in all cases. Additional order O(q?)

contributions to My, ; come from graphs with @, 10 and
two pion-nucleon interactions at NLO or one pion-nucleon
interaction at NNLO (only the Tf+ part of the operator is
found to contribute). Contributions from the same graphs
to By, k+1 Or M7y, 141 are possible by power counting but
turn out to be zero. Other contributions at order O(q?)
which are possible by power counting involve at most one
pion-nucleon interaction at NLO and do not appear for
the reason given at the end of the preceding paragraph:
there is no correction to Mty or Eryj from @y k1,0,
Qn k05 @nk—1,1 OF Qnk—1,2 and no correction to My, i
from Qn k41,0, @nk+2,0, @nk,1 OF Qppy11-

Taking into account the graphs with pion operator in-
sertions shown in figs. 2a and b, we finally find

2 2
I=0 _ 5 :1=0(0) 3m m
Mka = MTn,k (1 — 72(471_}?)2 IOg ﬁ) + ... s

I=1
MTn,k -

2 2
T=1(0) m 2 m 2
MTnJe (1—72(471_}?)2 [(69A+1) log?-l-élgA])
I= L,
+ 0401 MTn}n(El )(t) +.o,
gI=0 _ pl=0(0) 3m? 5 | m?
Tnk — LTnk 1- 2(4nF)? (29A + 1) Ogﬁ
I= T
+5k,n71 Tn01’521)()+"-a

I=1
ETn,k =

2

E1:1(0) 1— m
Tk 2(4nF)?
+...,

)

m2
(4g% + 1) log = +4¢%
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gr=0 _
Tn,k —
~— 3m? m?
EF0O (1 = (262 +1)log — | +...
Tn,k 2(47TF)2 ( ga + ) 0og /J2 + )
Eéqzzlk =
=I=1(0) m? 2 m? 2
Eka 1—72(471_}?)2 (4gA+1)logﬁ +4gA
+... (100)
and
~r=0 ~71=0(0 3m? m?
My, =Mz, k( ) <1 T 3dnF)? (29% +1) log F)
~I1=0 m? g m? 1=0(2,n
+ Tnk()(4 F;‘ log'u +6kn 2MTn,n(—2)(t)+"‘7
M=t
Tn,k —
2
7 I=1(0) m 2
_ pl=1(0) m?g% log _2
ko 3(4nF)? 2

ar1= L, 1= T
Ot [ M) () + Mg 20 (0)] + .., (101)

where for brevity we have written ... to denote analytic
terms proportional to m? or t and corrections of order
O(¢®). The analytic terms are due to higher-order tree

level insertions as specified below (34). The contributions
from pion operator insertions read

EI:(](QJI’) (t) — _1]’\271:0(2’77) (t)

Tn,n—1 4 Tn,n—2
3g 2
a71=0(2,7
MTn,n(—Q )(t) = - A 2 Man n—j
even
2 m2(n)
/ dnn’=2m?(n)log 2 (102)
with n even in the isosinglet case and
I=1(2,7) m?
MTnn 1 (t) m X;Mann j 4gAm IOg
d
1 ‘ 2
+ / dpn/™1 [gi (2m® —t) <log m'ugn) + 1)
—1
m2
- (3 - D) tog ™1 } ,
o
TFI=1(1,x WMQ
MTn,n(fl )(t) - ( A Z Man n—j / d77 77] 1m(77)7
odd
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Fig. 3. One-loop graphs contributing to two-pion matrix el-
ements of the pion operator Q2" (a) in (96). The operator
insertion is denoted by a black blob.

2

> Mbry {493; m” log %

4(4nF)?
m*(n)
M2 +1>

odd
1
-|—/ dnni~! [gi (2m2 — t) <log
—1
mQ(n)]
2
with n odd in the isotriplet sector. As remarked in [14], the
corrections from pion operator insertions are very similar

for the chiral-odd and chiral-even form factors. We find a
correspondence

arIl=1(2,7 1
M0 () = -

+ (gi —-1- 4MC4) m2(n) log (103)

I=0 I=1
MTnn 2<_> Mnn 2 MTnn 1<_> Mnn 1
I=1 1 pI=1
MTn n—1 A En n—1 (104)

for the terms in (102) and (103) when we interchange

Mby, i ¢ 2795470
Let us compare our results (100) to (103) to those
in ref. [14], which gives the corrections of order O(q) for

Mz h and of order O(g?) for all other form factors®. We
agree with the expressions given there, except for the cor-
rections from nucleon operator insertions without a factor
g% in the isosinglet form factors, which are absent in [14],
and for the corresponding term in MTn > Where we have a
different coefficient. These corrections are due to the tad-
pole graph in fig. 1b, with the pion-nucleon vertex gener-
ated by the two-pion terms in the expansion (89) of 77,
and 77, . Since this vertex has no spin or momentum struc-
ture, the corresponding corrections must be the same for
all form factors with a given isospin.

Let us finally give the corrections of order O(¢?) to the
chiral-odd GPDs of the pion. They are given by the one-
loop graphs shown in fig. 3 with insertion of the pion oper-
ators (96) and from tree level insertions of operators with
chiral dimension n + 3. For the form factors (82) we find

m2
log—2> + ...
7

9 The tensor form factors in [14] are related to those intro-
duced here by MT ~ Ep, ET ~ Mr/2, WT ~ —4Mr (all
up to terms suppressed by factors of order A%/M?) and by
CT =Er

. - 3m?
Bk (t) = BT,(EL (1 T 30nF)2 (105)
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for even n, and

2 2
- (0 m m
BTn,k( )= BT’I(’L;c <1 - 72(47#7)2 log F)
1 i (0)
+ 0k n—1 7(47rF)2 22 J Bl
j=1
1 odd
x / dnn’~t m*(n) log
—1

m?*(n)
e (106)

for odd n, where the ... stand for analytic terms from tree-
level graphs and for corrections of order O(g*). The correc-
tions going with logm?/u? are due to the tadpole graph
in fig. 3a and are independent of k. The term involving an
integral over 7 is due to the graph of fig. 3b and can only
occur for k =n — 1 (and thus only in the isotriplet case).
This is because the operator insertion on the pion line can-
not produce any factor (aP) and the four-pion vertex can
only produce one such factor after the loop integration.

9 Results for moments of nucleon and pion
GPDs

In this section, we rewrite our results in terms of the
form factors A, i, Bn.k, Cn, Amk, Bn r and A7y, i, BTn ks

Atp i, By, which describe the moments of GPDs in
commonly used parameterizations. We give expressions
for the value and the first derivative of each form fac-
tor at ¢t = 0, which should be useful for applications in
lattice QCD. The corrections obtained from graphs with
pion-nucleon operator insertions are completely specified
in this way, because they are independent of ¢. In the fol-
lowing we will use the abbreviation A, =47 F.

For a convenient overview of results we also reproduce
the expressions for isosinglet distributions from [13] here.
Together with (9), (10) and the expressions in sect. 5, we
find that up to corrections of order O(m?) the chiral-even
vector form factors at ¢ = 0 have the form

A{ECO( )—AI 0()+AI O(Qm)mz

2 2
=0 I=0(0) I=0(0) I= 0(0) m-=g, m
BIZ°(0)=B!; (A + Bl )—Ai log

+ BI 0(2 m) I:O(Q,ﬁ) (0)

n,n—2

? + 6k,n72 B
C1m0(0) = c100

+ C{lzo(?,m)m2 + Cé:o(lﬂr) (0) + C£:0(2,7r) (0) ,

2
A= {1- 4 S 0+ s+ 26

+AI 1(2, m)m2+6k’n_1AI 1(277r)(0),

n,n—1
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2 2
B30 = B3 {1 2 g + 1)10g 2+ 27|
X o
2
I=1(0) I= 1(0) m? gA m
+ (A + B~ ) e log "
N BI 1@m), 2 Semes [B{L;llji,ﬂ)(o) n Bi nl(% 77)( )] :

2
_ m
Ciil( ) CI 1 {1 - A2

[(39?4 +1)log m_2 + 2g?4] }
X o

+ CI=12m) 2 (107)

The labeling of coefficients with superscripts (0), (2,m),
(1,7) and (2,7) follows the same pattern as in sects. 5
and 8. The contributions from pion operator insertions
read

—0(2.7 6m g
B’rIL,nO—(g’ )(O) —A4 1 Z 2- ] nn VI
X even
_ 3mmM
170(1,71') gA 9—J ( )
Cn ( ) 2/12 Z + 1 n n— ] I
even
_ 3m
I1=0(2,7) i
Cn (O) 2/12 1 Z 2- J n n J

even

m> 3 m>
l S — Mey <IOgF+1>+ZMC2IOgF

12m?
A3

+ Mecs <10g )

22 ],]-l-l AR (108)

j=2
even
where n is even, and
I=1 (2,7 2m 9
Ann(l )() Al 22 JJAnn]
x
odd
2
m
+A_2 ( )10g_+2gA 22 ]An(n)]a
X j=1
odd
=1(1,m 4 M ™
B0 () = - ATmA9A 22 ATy
odd
=1(2,7 4m g 7
BS 5™(0) = A Jog 22 ijAn©
x
odd
4m? m? x
SR 2 <logﬁ+1> Mecylog ] 22 ]An(s)],
X
odd
(109)

where n is odd. The An n—; are the leading terms in the
chiral expansion of the pion form factors in (48) and fulfill
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the relations [12]
n
> 2_jAZ’(2),j =—ATY for even n,
e?ien
Z 2747 = pr© for odd n, (110)
odd

where BT is the n-th moment of the pion distribution
amplitude to leading order in the chiral expansion, as in-
troduced in sect. 5.3. Estimates for the values of the low-
energy constants ¢; appearing in (108) and (109) can be
found in [30].

For the axial form factors we have

. . 3m2a> 2
AI50(0) = A0 {1 - =4 log = + 1} }
X H
~1=0(2,m
+ An,k ( ) 2’
2.2 2
=0 »1=0(0) 3m-gy
BI5%(0) = B, {1— e ! F+1H
Nf;:](()) gA log— +BI 0(2, m) ’
X
11 +T=1(0) § m?
B0 = 370 {1- 5 e+ s+ |
X

2 2
= ~I=1(0 m m
B0 =550 1= e+ 1>logﬁ +ai]}
X
+g]_kl(0) m2 2 logm_ +BI 1(2, m)
™ 342 2
fork<n-1 (111)
with corrections of order O(m?), and
< AM?ga
Brll nl 1(0) = B m2 (1 —2m? gAldls)
+ Bn O L 0(m)  foroddn.  (112)

Note that the implicit pion mass dependence from B}, M,
ga and m; is relevant within the accuracy of this expres-
sion. Numerical estimates of the low- energy constant dig

are given in [31]. The derivative of Bn 4 (t) at t = O reads

42
) B'rIz nl 1(0) =By m4gA (1 - Qmigzldlg)
+0(m™1), (113)

where the order O(m™!) corrections are due to terms of
the form O(¢*®)/(m% —t) in B,IL =L . (t). Using BT =1, we
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obtain a ratio

8,BI=1 (0)

n,n—1

= B + O(m?)
atB{,Bl( )

(114)

which involves only physical matrix elements and is
independent of any low-energy constants. It would be in-
teresting to test this relation in lattice QCD calculations,
as this would indicate how well the chiral expansion
works at a given pion mass.

The derivatives at ¢ = 0 of the remaining chiral-even
form factors have nonanalytic contributions in the pion
mass only for

a'Bnn 2(0)_B'{Ln0;t)+aBI 027")( )7

n,n—2
9,0~ (0) = Ci=0®M +8,0,=0 0 ()
+0,C7=°™(0),

gAISL (0) = A Y 19,4151 5 0),

n,n—1
0, Bi51(0) = B, 0 +9,8,77(0)
+8,B,577(0), (115)
with corrections of order O(m), where
0B, 5™ (0) =
39% < > o J 0
——=|log— +1 22 J
2 2 n,n—j
A2 = +1
even
9 CI:O(IJr) (0)
_ M7y Z o 5J+14) 7 (0)
m 842 G+1)(G+3) i
even
9 0110(277")( ) —
395 ’ i J gm0
~ 294 (1o 43 9=
1 i 0og b} + ZQ ]+1 n,n—j
dven
2 | g4 §
+A_3< 3 +M1__MC2<10g 1)
2 n . .
;i G +4) 7 (0)
- M lo + 27— ~
c3< & 2) ; G+ +3) "
even
(116)
with n even, and
g n
I=1(2,m) — 7 (0
8,ALS1 G (0) = - <1og—2 + 1) 22 iqr©
tad
1 2 n 7 (0)
— (g4 —1)log — — (¢4 +1 2~
+2A§< (gA )Og 2 (gA+) ~ ]+21
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) M g3 Ay~
0, By (0) = ;‘5:24 el
m A% = ji+2

I T 2 m
08,570 = T <logu—+1> S 2iar®

j=1
odd
9 w(0)
— M log — p
+Ai C4<0g + ) Z i t2
odd
(117)

with n odd. All other chiral-even nucleon form factors re-
ceive only corrections from pion-nucleon operators, so that
their derivatives at ¢ = 0 are given by the appropriate co-
efficients with superscript (2, ¢), which are due to tree level
contributions.

For the chiral-odd nucleon form factors at ¢t = 0 we
find

=0 1=0(0 3m m>
Ay (0) = ATn,k( ) {1 - W (29A +1) log F}

I=0(2,m) 2
+ATn7k m-,

—=I=0

=T=0(0) [ 3m?
BTnk (0) BTnk {1 242

2
(2% + 1) log m_2}
X 1%

1=0(0) | I=0(0)\ 3m*g> m =
+ (ATn,k( ) By i ) 2 A log yEl + Brypp m7,
X

~1=0 ~1=0 3m m?
ATnJc (0) = ATnIc( ) {1 - W (2.9A + )log F}

1=0(0) , 31=0(0) m?g% . m?
+<ATnk +35 BTnk > A2 1 /1'2

+AI 02m)

Tn,k + 6k,n72 AI_O e (O) ’

Tn,n—2

~[— ~I 3m m?
BTn?k 0) = BTnOIc( ) {1 - W (29,4 + 1) log — }

I=0(2,m) I=0(2,7
+BTnk( 'm? + O n 1BanE 1)(0)a

I=

ATnTk (0) =

A=t [ m (464 +1) 1o ™ g
Tn,k 2/12 gA g 12 9A

I=1(2
+ATnIc m) ’

}

—I=1
BTn k (0) =

—I=1(0) m? m?
By {1 2/12 [(4gA+ )log?-l-élgi]}

I1—1(0) . =I=1(0)\ m?g>3 m?  —I1=1(2,m)
- (ATn,k( ) + B i ) A log N_+BTnk m?

A2

—=I=1(2,7)
+6kn lBTnn 1
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~r
ATnTk (0) =
2
~T=1(0)
ATn,k {1 - 2/12

m2a> 2
T 1(0) —=1=1(0) 9a m
- <ATn k BTn k > 3 AQ log _M2

+4gA

|

495 + 1) lo
(49% +1) gﬂ

I=1(2 I=1(1,7 I=1(2,7
+ATnk( m) +6k I:ATn'rE 1)( )+ATn1’(L 1)(0)]1
~I1=1
BTn,k (0) =
B Ly e 1) 10g ™ 4 ag2

Tn,k 2/1% gA g ,u2 ga
+ By P (118)
with corrections of order O(m?), where

~T=0(2,7 3m 9

ATn,'rE—Q)(O) A 1 Z Mb Tn,n—j

even
I= T = T
BITte0) = S A0 0) (119)
with n even, and
—I=1(2,7) m?
BTn n—1 (O) - 2 ZMan,n—j
odd
2 " Mb -
m Tn,n—
= 1)1 2 = Tnnsg
T (gAJr)OgqugAZ; i
dd
TI=1(1,7 7rmMg Tn n—
ATn,r(Lfl)(O = - Z ] !
odd
2 2 2 1
TI=1(2,7 m-g m
ATngrE—l)(O) = 4 2 Z MbT’rL n—j
odd

2 2 27 . Mb B
+% I <10g—+1> MC4logm ] Z Inin—y

X —1 J

j
odd
(120)

with 7 odd. Our results for AJS!(0), AJ5'(0) and A5 (0)
reproduce the expressions in [32] for the distributions
of unpolarized, longitudinally and transversely polarized
quarks and antiquarks in the nucleon. The derivatives at
t = 0 of the following form factors have nonanalytic con-
tributions in the pion mass:

O A0, 5(0) = ATN %) + 9, A2 (0),

at énon 1 (0) B§n0n2 ? + at §n01’52 Ir) (O) )
—I=1 —I=1(2,t —=I=1(2,n

6t‘BTnn 1(0) BTn'rE ) at‘Ban(L 1)(0)7

g, A (0) = A5 30 49, A7 (4 ()

Tn,n

+0 Aanl,f 7(0), (121)
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where corrections are of order O(m) and
392 m? . Man n—j
8145«02;)()— —g(log—Q-l-l 27’3’
n,n 2AX o = j+1
even
I= , T I= , T

0BT 0) = 50,45 0) (122)

with even n and

n
—=I=1(2,7) i 9a M Tn,n—j
8BTnn (0)——m (10g—2+1)21 ]
odd
1 2 m2 2 :| - Mannf
+ —1log— — (g% +1 _Inn—j
odd
Mﬂg MbT
8AI 1L () — TIA P ¥Tnn—j
Tn,n—1 ( ) m 4/12 Zl J+2 )
odd
> 2 " Mby, .
I 1(2,7) _ ga m Tn,n—j
at Tn,n—1 (0)__@ <10g?+1>2ﬁ
Jj=1
odd
1 2 - Mann—'
— - M lo +1 —
2 | C4< gu > ; i +2)
odd

(123)

with odd n. As a consequence of the relations (104),
we find the following correspondence between the correc-
tions (119), (120), (122), (123) from pion loop insertions
to chiral-odd form factors and their chiral-even counter-
parts (108), (109), (116), (117):

BIO

n,n—2:

lAII

n,n—1

1 pl=1
ATnn 1<_>__B

n,n—1:

(124)

ATnn 2<_>

BTnn 1<_>

when the low-energy constants are interchanged according
t0 Mbrpy, ,_; ¢+ 2775 A7)

nn—j*

Let us also give the expressions of form factors and
their derivatives at ¢ = 0 for the moments of pion GPDs.
For the chiral-even moments, the expressions given in [12]

result in

7 (1,2)

™
n,k

(0) =

for

( A”(O) + A”(2 ™m? 4§, A

n,n

even n,

(125)
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with corrections of order O(m?) and
A7r(l,2) _ m? o m_2 1 Z 9= i J A7r(0)
n,n - 2/12 g l” — J + 1 n,n—j?
dven
(1,2
no? = (126)

s iy
odd

Using the relation (110) one thus has

2

ALy (0) = AT+ T logm 287 - A7)
A3
+ AT m? 4 O(m?) (127)

with n odd. For the chiral-odd moments we have
with (105) and (106)

( 2
(0 3m m T(2,m
for even n,
(0) m2 m2
BT, 1(0) = S B, i <1 - ng 2 >
(2, 1,2
+ BT;7km)m + O T; n) 1
L for odd n,
(128)
where corrections are again of order O(m*) and
(1,2 2m? m2e=__.1__0
BT;,n)—l = s o > 2 BT;,L—J‘ . (129)
X j=1 J
odd

The only nonanalytic contributions in the pion mass for
the derivatives of form factors are

0, A7 n(0) = AT

- J
/12 <10g +1>22 +1A

even

m(0)
n,n—j

J +4) (0)
12/12 z; )(j+3) Tend
even
3tAZ,n71(0) = Az(sj)l
2 n
R T
E <log 5 +1>22 g A
Jj=1
odd
8tB;:n,n71(0) = B;rﬁ(f'rf)fl
’ - 1 (0)
1 +1 2~ BrY (130
Ai <Og ) >]z:; ,](] +2) Tn,n—j ( )
odd

where the second index is always even and corrections are
of order O(m?).
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Let us finally take a look at moments of parton distri-
butions whose values are fixed by quantum numbers for
arbitrary values of the pion mass, see, e.g., [32,33]. For
AT 4(0) one readily finds that the explicit chiral logarithm
in (125) cancels against the one in (126). This is required
to ensure the quark number sum rule

1
AT = [ o (ur — s~ e+ d) =2 (13)

in the pion, which also implies AT E) ) = 2 and 147r(2 m = .
With this one also finds that our result (107) is consistent
with the quark number sum rules

I=0 Tz lu—u
A150(0) = /od( +d—d) =

=10) = 1 z(u—1u— 1) =
Alg (0)_/0 dz ( d+d) (132)

I= 0(0) =3 AI 1(0) _

in the proton, provided that A =1land

I=0(2,m I=1(2,m
AI,O( )_AI,O( )_0

10 Summary

In this paper and its companion [13] we have calculated
the chiral corrections to the full set of twist-two gener-
alized parton distributions in the nucleon, using heavy-
baryon chiral perturbation theory. For each form factor
parameterizing the moments of these distributions, our
results include the order O(q?) relative to its lowest-order
expression. We have presented a detailed account of the
power counting and of the operators that can contribute
to the chiral order we consider. We find that the oper-
ator structure is relatively simple in the basis of form
factors specified by (9) and (78). With the exception of

M, 1, and My, only those pion-nucleon operator inser-
tions contribute to the loop corrections of a given form
factor which already provide its lowest-order expression
at tree level. Furthermore, only operators with 7 A

A or 7'0 gl
from (28) and (88) contribute, but not those with 74 or

72 . Our analysis also shows that these simplifications will
no longer hold at higher orders in the chiral expansion.
Expressing our results in the basis of form factors pa-
rameterizing the moments of the usual nucleon GPDs,
we find that with the exception of AI=0 and CI=0 all
form factors receive chiral corrections from loop graphs
with nucleon operator insertions (see fig. 1). They are
of relative order O(¢?) and contain logarithmic terms
m?log(m?/u?), but are independent of ¢ and of the in-
dices n, k. In several cases these corrections involve a mix-
ing between different form factors: By receives correc-
tions involving not only its own lowest-order expression
but also the one of A, j, as seen in (107). Likewise, there

are corrections to By from A, i, to Brpx from A7, k,

and to ng,k from Ay + %FTn,k. We note that no such
mixing occurs for the linear combinations A,  + By, 1 and

Arnk + Bra-
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Further corrections are due to loop graphs with pion
operator insertions (see figs. 2a and b). They only occur for
form factors which are accompanied by the maximal num-
ber of vectors A, in the decomposition of the associated
matrix element, or by one factor less. Due to the quantum
number restrictions for pion operators, they only occur for
even n in the isosinglet and for odd n in the isotriplet sec-
tor. Corrections starting at order O(q) are obtained for

CIOBll

1 and ATnn 1, and corrections starting at

order O(q*) for B} ,, AITnOn 2, BTnn 1 AlZL, and
I
BTnln To order O(g?), the corrections for C1=0 in-

volve the low-energy constants ¢y, co, ¢g from the pion-
nucleon Lagrangian (18), whereas those for BI !, and

A%nln 1 involve c4. The corrections from pion operator
insertions depend on t. They are responsible for a non-
analytic pion mass dependence of the derivatives of form

factors at ¢ = 0, namely a 1/m behavior for 8,C;=°(0),

0 Bnn 1(0) and & ATnn 1(0) and a log(m?/u?) behav-
ior in the other cases. We note that these corrections also
determine the onset of the two-pion cut at timelike ¢ for
the form factors in question.

The pseudoscalar form factors BI non—1 leceive correc-
tions from one-pion exchange (see ﬁg. 2¢). They take
the very simple form (68) when expressed in terms of
physical quantities. In particular, we find that the ratio
8,BI511(0)/8,BI5' (0) of derivatives is given by the mo-
ment B of the pion distribution amplitude, with correc-
tions of order m?. It would be interesting to test this pre-
diction of chiral symmetry in lattice QCD calculations.

We have finally evaluated the corrections to the chiral-
odd pion GPDs at order O(g?), thus complementing the
calculation [12] for the chiral-even sector. A compilation
of our results for the values and derivatives at ¢ = 0 of all
moments of nucleon and pion GPDs is given in sect. 9.

We are grateful to U.-G. Meifiner for clarifying discussions.
This work is supported by the Helmholtz Association, contract
number VH-NG-004.
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